Примеры магнитных явлений в физике 7. Презентация на тему "магнитные явления в природе"

Примеры магнитных явлений в физике 7. Презентация на тему "магнитные явления в природе"

13.03.2024

На данном уроке, тема которого: «Электромагнитное поле», мы обсудим понятие «электромагнитное поле», особенности его проявления и параметры этого поля.

Мы разговариваем по мобильному телефону. Как передается сигнал? Как передается сигнал от космической станции, улетевшей к Марсу? В пустоте? Да, вещества может не быть, но и это не пустота, есть нечто другое, через что передается сигнал. Это нечто назвали электромагнитным полем. Это прямо не наблюдаемый, но реально существующий объект природы.

Если звуковой сигнал - это изменение параметров вещества, например воздуха (рис. 1), то радиосигнал - это изменения параметров ЭМ-поля.

Рис. 1. Распространение звуковой волны в воздухе

Слова «электрический» и «магнитный» нам понятны, мы уже изучили отдельно электрические явления (рис. 2) и магнитные явления (рис. 3), но почему тогда мы ведем речь об электромагнитном поле? Сегодня мы в этом разберемся.

Рис. 2. Электрическое поле

Рис. 3. Магнитное поле

Примеры электромагнитных явлений.

В микроволновке создаются сильные, а главное - очень быстро изменяющиеся электромагнитные поля, которые действуют на электрический заряд. А как мы знаем, в атомах и молекулах веществ содержится электрический заряд (рис. 4). Вот на него и действует электромагнитное поле, заставляя молекулы быстрее двигаться (рис. 5) - увеличивается температура и еда нагревается. Такую же природу имеют рентгеновские лучи, ультрафиолетовые лучи, видимый свет.

Рис. 4. Молекула воды является диполем

Рис. 5. Движение молекул, имеющих электрический заряд

В микроволновке электромагнитное поле сообщает веществу энергию, которая идет на нагревание, видимый свет сообщает рецепторам глаза энергию, которая идет на активацию рецептора (рис. 6), энергия ультрафиолетовых лучей идет на образование меланина в коже (появление загара, рис. 7), а энергия рентгеновских лучей заставляет чернеть пленку, на которой вы можем увидеть изображение своего скелета (рис. 8). Электромагнитное поле во всех этих случаях имеет разные параметры, поэтому и оказывает разное воздействие.

Рис. 6. Условная схема активации рецептора глаза энергией видимого света

Рис. 7. Загар кожи

Рис. 8. Почернение пленки при рентгене

Так что с электромагнитным полем мы сталкиваемся намного чаще, чем кажется, и уже давно привыкли к явлениям, которые с ним связаны.

Итак, нам известно, что электрическое поле возникает вокруг электрических зарядов (рис. 9). Здесь всё понятно.

Рис. 9. Электрическое поле вокруг электрического заряда

Если электрический заряд движется, то вокруг него, как мы изучали, возникает магнитное поле (рис. 10). Здесь уже возникает вопрос: движется электрический заряд, вокруг него есть электрическое поле, при чем здесь магнитное поле? Еще один вопрос: мы говорим «заряд движется». Но ведь движение относительно, и он может в одной системе отсчета двигаться, а в другой - покоиться (рис. 11). Значит, в одной системе отсчета магнитное поле будет существовать, а в другой нет? Но поле не должно существовать или не существовать в зависимости от выбора системы отсчета.

Рис. 10. Магнитное поле вокруг движущегося электрического заряда

Рис. 11. Относительность движения заряда

Дело в том, что есть единое электромагнитное поле, и источник у него единый - электрический заряд. Оно имеет две составляющие. Электрическое и магнитное поля - это отдельные проявления, отдельные компоненты единого электромагнитного поля, которые проявляются по-разному в разных системах отсчета (рис. 12).

Рис. 12. Проявления электромагнитного поля

Можно выбрать систему отсчета, в которой будет проявляться только электрическое поле, или только магнитное поле, или оба сразу. Однако нельзя выбрать систему отсчета, в которой и электрическая, и магнитная составляющая будет нулевой, то есть в которой электромагнитное поле перестанет существовать.

В зависимости от системы отсчета мы видим либо одну составляющую поля, либо другую, либо их вместе. Это как движение тела по окружности: если посмотреть на такое тело сверху, увидим движение по окружности (рис. 13), если со стороны - увидим колебания вдоль отрезка (рис. 14). В каждой проекции на ось координат круговое движение - это колебания.

Рис. 13. Движение тела по окружности

Рис. 14. Колебания тела вдоль отрезка

Рис. 15. Проекция круговых движений на ось координат

Другая аналогия - проецирование пирамиды на плоскость. Ее можно спроецировать в треугольник или квадрат. На плоскости это совершенно разные фигуры, но все это - пирамида, на которую смотрят с разных сторон. Но нет такого ракурса, при взгляде с которого пирамида исчезнет совсем. Она только будет выглядеть более похожей на квадрат или треугольник (рис. 16).

Рис. 16. Проекции пирамиды на плоскость

Рассмотрим проводник с током. В нем отрицательные заряды скомпенсированы положительными, электрическое поле вокруг него равно нулю (рис. 17). Магнитное поле не равно нулю (рис. 18), возникновение магнитного поля вокруг проводника с током мы рассматривали. Выберем систему отсчета, в которой электроны, образующие электрический ток, будут неподвижны. Но в этой системе отсчета относительно электронов будут двигаться положительно заряженные ионы проводника в обратную сторону: все равно возникает магнитное поле (рис. 18).

Рис. 17. Проводник с током, у которого электрическое поле равно нулю

Рис. 18. Магнитное поле вокруг проводника с током

Если бы электроны были в вакууме, в этой системе отсчета вокруг них возникало бы электрическое поле, ведь они не скомпенсированы положительными зарядами, однако магнитного поля не было бы (рис. 19).

Рис. 19. Электрическое поле вокруг электронов, находящихся в вакууме

Рассмотрим другой пример. Возьмем постоянный магнит. Вокруг него есть магнитное поле, но электрического нет. Действительно, ведь электрическое поле протонов и электронов компенсируется (рис. 20).

Рис. 20. Магнитное поле вокруг постоянного магнита

Возьмем систему отсчета, в которой магнит движется. Вокруг движущегося постоянного магнита возникнет вихревое электрическое поле (рис. 21). Как его выявить? Поместим на пути магнита металлическое кольцо (неподвижное в данной системе отсчета). В нем возникнет ток - это хорошо нам известное явление электромагнитной индукции: при изменении магнитного потока возникает электрическое поле, приводящее к движению зарядов, к появлению тока (рис. 22). В одной системе отсчета электрического поля нет, а в другой оно проявляется.

Рис. 21. Вихревое электрическое поле вокруг движущегося постоянного магнита

Рис. 22. Явление электромагнитной индукции

Магнитное поле постоянного магнита

В любом веществе электроны, которые вращаются вокруг ядра, можно представлять как маленький электрический ток, который протекает по окружности (рис. 23). Значит, вокруг него возникает магнитное поле. Если вещество не магнитится, значит, плоскости вращения электронов направлены произвольно и магнитные поля от отдельных электронов компенсируют друг друга, так как направлены хаотично.

Рис. 23. Представление вращения электронов вокруг ядра

В магнитных веществах как раз-таки плоскости вращения электронов ориентированы примерно одинаково (рис. 24). Поэтому магнитные поля от всех электронов складываются, и получается уже ненулевое магнитное поле в масштабе целого магнита.

Рис. 24. Вращение электронов в магнитных веществах

Вокруг постоянного магнита существует магнитное поле, а точнее магнитная составляющая электромагнитного поля (рис. 25). Можем ли мы найти такую систему отсчета, в которой магнитная составляющая обнуляется и магнит теряет свои свойства? Все-таки нет. И правда, электроны вращаются в одной плоскости (смотри рис. 24), в любой момент времени скорости электронов не направлены в одну и ту же сторону (рис. 26). Так что невозможно найти систему отсчета, где они все замрут и магнитное поле пропадет.

Рис. 25. Магнитное поле вокруг постоянного магнита

Таким образом, электрическое и магнитное поля - это разные проявления единого электромагнитного поля. Нельзя сказать, что в конкретной точке пространства есть только магнитное или только электрическое поле. Там может быть и одно, и другое. Все зависит от системы отсчета, из которой мы рассматриваем эту точку.

Почему же мы до этого говорили отдельно об электрическом и о магнитном полях? Во-первых, так сложилось исторически: люди давно знают о магните, люди давно наблюдали наэлектризованный о янтарь мех, и никто не догадывался, что эти явления имеют одну природу. А во-вторых, это удобная модель. В задачах, где нас не интересует взаимосвязь электрической и магнитной составляющих, их удобно рассматривать отдельно. Два покоящихся заряда в данной системе отсчета взаимодействуют через электрическое поле - мы применяем к ним закон Кулона, нас не интересует, что эти же электроны могут в какой-то системе отсчета двигаться и создавать магнитное поле, и мы успешно решаем задачу (рис. 27).

Рис. 27. Закон Кулона

Действие магнитного поля на движущийся заряд рассматривается в другой модели, и она тоже в рамках своей применимости отлично работает при решении ряда задач (рис. 28).

Рис. 28. Правило левой руки

Постараемся понять, как взаимосвязаны составляющие электромагнитного поля.

Стоит отметить, что точная связь достаточно сложна. Ее вывел британский физик Джеймс Максвелл. Он вывел знаменитые 4 уравнения Максвелла (рис. 29), которые изучаются в вузах и требуют знания высшей математики. Мы их изучать, конечно, не будем, но в нескольких простых словах разберемся, что они означают.

Рис. 29. Уравнения Максвелла

Опирался Максвелл на работы другого физика - Фарадея (рис. 30), который просто качественно описал все явления. Он делал рисунки (рис. 31), записи, которые очень помогли Максвеллу.

Рис. 31. Рисунки Майкла Фарадея из книги «Электричество» (1852)

Фарадей открыл явление электромагнитной индукции (рис. 32). Вспомним, в чем оно заключается. Переменное магнитное поле порождает ЭДС индукции в проводнике. Иными словами, переменное магнитное поле (да, в данном случае - не электрический заряд) порождает электрическое поле. Это электрическое поле является вихревым, то есть линии его замкнуты (рис. 33).

Рис. 32. Рисунки Майкла Фарадея к опыту

Рис. 33. Возникновение ЭДС индукции в проводнике

Кроме того, мы знаем, что магнитное поле порождается движущимся электрическим зарядом. Правильнее будет сказать, что оно порождается переменным электрическим полем. При движении заряда электрическое поле в каждой точке изменяется, и это изменение порождает магнитное поле (рис. 34).

Рис. 34. Возникновение магнитного поля

Можно заметить появление магнитного поля между обкладок конденсатора. Когда он заряжается или разряжается, между пластин возникает переменное электрическое поле, что в свою очередь порождает магнитное поле. В данном случае линии магнитного поля будут лежать в плоскости, перпендикулярной линиям электрического поля (рис. 35).

Рис. 35. Появление магнитного поля между обкладок конденсатора

А теперь посмотрим на уравнения Максвелла (рис. 29), ниже дана для ознакомления небольшая их расшифровка.

Значок - дивергенция - это математический оператор, он выделяет ту составляющую поля, которая имеет источник, то есть линии поля на чем-то начинаются и заканчиваются. Посмотрите на второе уравнение: эта составляющая магнитного поля равна нулю : линии магнитного поля ни на чем не начинаются и не заканчиваются, магнитного заряда не существует. Посмотрите на первое уравнение: такая составляющая электрического поля пропорциональна плотности заряда . Электрическое поле создается электрическим зарядом .

Наиболее интересны следующих два уравнения. Значок - ротор - это математический оператор, выделяющий вихревую составляющую поля. Третье уравнение означает, что вихревое электрическое поле создается изменяющимся во времени магнитным полем ( - это производная, которая, как вы знаете из математики, означает скорость изменения магнитного поля). То есть речь идет об электромагнитной индукции.

Четвертое уравнение показывает, если не обращать внимания на коэффициенты пропорциональности: вихревое магнитное поле создается изменяющимся электрическом полем , а также электрическим током ( - плотность тока). Речь идет о том, что мы хорошо знаем: магнитное поле создается движущимся электрическим зарядом и .

Как видите, переменное магнитное поле может порождать переменное электрическое, а переменное электрическое поле в свою очередь порождает переменное магнитное и так далее (рис. 36).

Рис. 36. Переменное магнитное поле может порождать переменное электрическое, и наоборот

В результате в пространстве может образовываться электромагнитная волна (рис. 37). Эти волны имеют разные проявления - это и радиоволны, и видимый свет, ультрафиолет и так далее. Об этом поговорим на следующих уроках.

Рис. 37. Электромагнитная волна

Список литературы

  1. Касьянов В.А. Физика. 11 кл.: Учеб. для общеобразоват. учрежде-ний. - М.: Дрофа, 2005.
  2. Мякишев Г.Я. Физика: Учеб. для 11 кл. общеобразоват. учреждений. - М.: Просвещение, 2010.
  1. Интернет портал «studopedia.su» ()
  2. Интернет портал «worldofschool.ru» ()

Домашнее задание

  1. Можно ли обнаружить магнитное поле в системе отсчета, связанной с одним из равномерно движущихся электронов в потоке, который создается в кинескопе телевизора?
  2. Какое поле возникает вокруг электрона, движущегося в данной системе отсчета с постоянной скоростью?
  3. Какое поле можно обнаружить вокруг неподвижного янтаря, заряженного статическим электричеством? Вокруг движущегося? Ответы обоснуйте.

Приветствую вас дорогие читатели. Много тайн в себе скрывает природа. Одним тайнам человеку удалось найти объяснения, а другим нет. Магнитные явления в природе происходят на нашей земле и вокруг нас, а мы их порой попросту не замечаем.

Одно из таких явлений можно увидеть, взяв в руки магнит и направив его на металлический гвоздь или булавку. Увидеть, как они притянутся друг к другу.

Многие из нас еще помнят со школьного курса физики опыты с этим предметом, обладающим магнитным полем.

Надеюсь, вы вспомнили, что такое магнитные явления? Конечно — это способность притягивать к себе другие металлические предметы, имея магнитное поле.

Рассмотрим магнитную железную руду, из которой и делают магнит. Такие магниты наверняка есть у каждого из вас, на дверце холодильника.

Вам наверно будет интересно узнать, а какие бывают еще магнитные природные явления? Из школьных уроков по физике мы знаем, что поля бывают магнитные и электромагнитные.

Да будет вам известно, что магнитный железняк в живой природе был известен еще до нашей эры. В это время и был создан компас, который китайский император использовал во время своих многочисленных походов и просто морских прогулок.

Переводится с китайского языка слово магнит как любящий камень. Удивительный перевод, не правда ли?

Христофор Колумб, использующий магнитный компас в своих путешествиях, заметил, что географические координаты влияют на отклонение стрелки в компасе. Впоследствии, этот результат наблюдения привел ученых к выводу, что и на земле имеются магнитные поля.

Влияние магнитного поля в живой и неживой природе

Уникальная способность перелетных птиц с точностью находить места их обитания всегда была интересна ученым. Магнитное поле земли помогает им безошибочно прокладывать . Да и миграции многого ряда животных зависят от этого поля земли.

Так свои «магнитные карты» имеют не только пернатые, но и такие животные как:

  • Черепахи
  • Морские моллюски
  • Лососевые рыбы
  • Саламандры
  • и многие другие животные.

Ученые выяснили, что в теле живых организмом есть специальные рецепторы, а так же частицы магнетита, которые помогают чувствовать магнитные и электромагнитные поля.

Но как именно любое живое существо, живущее в дикой природе, находит нужный ориентир, однозначно не могут ответить ученые.

Магнитные бури и их влияние на человека

Мы уже знаем о магнитных полях нашей земли. Они защищают нас от воздействия заряженных микрочастиц, которые долетают до нас с Солнца. Магнитная буря это не что иное – это внезапное изменение защищающего нас электромагнитного поля земли.

Не замечали, как у вас иногда внезапная резкая боль стреляет в головной висок и тут же появляется сильнейшая головная боль? Все эти болезненные симптомы, происходящие в организме человека, указывают на наличие этого природного явления.

Это магнитное явление может продолжаться от часа до 12 часов, а может быть и кратковременным. И как подмечено врачами, в большей степени этим страдают уже немолодые люди с сердечно-сосудистыми заболеваниями.

Подмечено, что в продолжительную магнитную бурю увеличивается количество инфарктов. Есть ряд ученых, которые отслеживают появление магнитных бурь.

Так что дорогие мои читатели иногда стоит узнавать об их появлении и стараться предотвратить по возможности их ужасные последствия.

Магнитные аномалии в России

По всей огромной территории нашей земли существуют различного рода магнитные аномалии. Давайте немного узнаем о них.

Известный ученый и астроном П. Б. Иноходцев еще в далеком 1773 году изучал географическое положение всех городов центральной части России. Именно тогда он обнаружил сильную аномалию в районе Курска и Белгорода, где стрелка компаса лихорадочно вращалась. И только в 1923 году была пробурена первая скважина, которая выявила металлической руды.

Ученые и в наши с вами дни не могут дать объяснения огромным скоплениям железной руды в Курской магнитной аномалии.

Из учебников по географии мы с вами знаем, что добыча всей железной руды ведется в горных областях. А как образовались залежи железной руды на равнине — неизвестно.

Бразильская магнитная аномалия

У океанского побережья Бразилии на высоте более 1000 километров основная часть приборов у пролетающих над этим местом летательных аппаратов – самолетов и даже спутников приостанавливает свою работу.

Представьте себе оранжевый апельсин. Его кожура защищает мякоть, так и магнитное поле земли с защитным слоем атмосферы защищает нашу планету от вредного воздействия из космоса. А Бразильская аномалия похожа на вмятину в этой кожуре.

К тому же таинственные наблюдались не однократно в этом необычном месте.

Еще немало загадок и тайн земли нашей предстоит раскрыть ученым, друзья мои. Хочу вам пожелать здоровья и чтобы обошли вас стороной неблагоприятные магнитные явления!

Надеюсь, вам понравился мой краткий обзор магнитных явлений в природе. А может быть, и вы их уже наблюдали или же ощущали их действие на себе. Напишите об этом в ваших комментариях, мне будет интересно об этом прочесть. А на сегодня это все. Разрешите с вами попрощаться и до новых встреч.

Предлагаю Вам подписаться на обновления блога. А также вы можете поставить свою оценку статье по 10 системе, отметив ее определенным количеством звездочек. Приходите ко мне в гости и приводите друзей, ведь этот сайт создан специально для вас. Я уверена, что вы обязательно найдете здесь много полезной и интересной информации.


14. Индукция магнитного поля. Принцип суперпозиции магнитных полей. Сила Ампера. Сила Лоренца. Электроизмерительные приборы. Магнитные свойства вещества.

Магнитные явления

И электрические, и магнитные явления – это взаимодействие тел на расстоянии. Эти взаимодействия проявляются в возникновении механических сил и моментов сил, действующих между телами.

Отличие электрического и магнитного взаимодействия проявляется, например, в том, что для разделения электрических зарядов можно натирать разные предметы друг от друга, а для получения магнитов тереть предметы друг о друга бесполезно. Обернув мокрой тканью заряженный предмет, можно уничтожить его электрический заряд. Та же процедура по отношению к магниту не приведет к исчезновению магнитных свойств. Намагничивание магнитных материалов в присутствии других магнитов не приводит к разделению электрических зарядов. Эти два вида взаимодействия предметов на расстоянии не сводятся один к другому.

Экспериментальное исследование магнитов и различных материалов показывает, что некоторые предметы постоянно обладают магнитными свойствами, то есть являются «постоянными магнитами», а другие тела обретают магнитные свойства только в присутствии постоянных магнитов. Существуют также материалы, которые не имеют явно выраженных магнитных свойств, то есть они не притягиваются к сильным постоянным магнитам и не отталкиваются от них. Собственные и индуцированные магнитные свойства предметов приводят к аналогичным эффектам. Например, постоянные полосовые магниты, образцы которых есть обычно в каждом кабинете физики в любой школе, при подвешивании их в горизонтальном положении ориентируются так, что своими концами показывают на север и на юг. Одно это свойство магнитов немало послужило человеку. Компас был придуман очень давно, однако количественное изучение магнитных свойств предметов и математический анализ этих свойств были проведены только в 18-19 веках.

Представим себе, что у нас есть «длинные» магниты, которые имеют сильно разнесенные друг от друга полюса. Если два полюса двух разных магнитов поместить близко друг к другу, а вторые полюса этих же магнитов будут при этом находиться далеко друг от друга, то силовое взаимодействие между близкими полюсами описывается такими же формулами, как и в законе Кулона для электростатического поля. Каждому полюсу магнита можно приписать магнитный заряд, который будет характеризовать его «северность» или «южность». Можно придумать процедуру, включающую измерения сил или моментов сил, которая позволяла бы сравнивать магнитные «заряды» любых магнитов с эталоном. Это мысленное построение позволяет решать практические задачи при условии, что мы пока не задаемся вопросом: а как устроен длинный полосовой магнит, то есть что там внутри магнита в области пространства, соединяющей два магнитных полюса.

Можно ввести единицу магнитного заряда. Самая простая процедура для определения такой единицы – считаем, что сила взаимодействия двух «точечных» магнитных полюсов единичного магнитного заряда, находящихся друг от друга на расстоянии 1 метр, равна 1 Ньютону. Поскольку попытки разделения магнитных полюсов всегда были неудачными, то есть в месте разреза полосового магнита всегда возникали два противоположных магнитных полюса, величины которых в точности равнялись величинам концевых полюсов, был сделан вывод о том, что магнитные полюса всегда существуют только парами. Следовательно, любой длинный полосовой магнит можно представлять в виде составленных в цепочку более коротких магнитов. Аналогично любой магнит конечных размеров может быть представлен в виде большого количества коротких магнитиков, распределенных по пространству.

Для описания силового взаимодействия электрических и магнитных зарядов используется одна и та же идея о существовании в пространстве некоторого силового векторного поля. В «электрическом» случае соответствующий вектор называется вектором напряженности электрического поля Е . Для «магнитного» случая соответствующий вектор называется вектором индукции магнитного поля В . (1)

Поля в обоих случаях можно описывать распределением в пространстве «силовых векторов». Для северного магнитного полюса направление силы, действующей на него со стороны магнитного поля, совпадает с направлением вектора В , а для южного полюса сила направлена противоположно этому вектору. Если величину «магнитного заряда» с учетом его знака («северности» или «южности») обозначит символом N, то сила, действующая на магнитный заряд со стороны магнитного поля равна F =NB .

Аналогично тому, как мы поступили при описании взаимодействия электрических зарядов через поле, мы поступаем и при описании взаимодействия магнитных зарядов. Магнитное поле, созданное точечным магнитным зарядом в окружающем пространстве, описывается в точности такой же формулой, как и в случае электрического поля.

B = К м NR /R 3 .

Константа К м – это коэффициент пропорциональности, который зависит от выбора системы единиц. Для взаимодействия магнитных зарядов тоже справедлив закон Кулона, а также справедлив и принцип суперпозиции.

Напомним, что закон Кулона (или закон Всемирного тяготения) и теорема Гаусса близнецы братья. Поскольку магнитные полюса по отдельности не существуют, а любой магнит может быть представлен в виде комбинации пар полюсов противоположной полярности и с равными величинами, то в случае магнитного поля поток вектора индукции магнитного поля через любую замкнутую поверхность всегда равен нулю.

Мы с вами обсуждаем магнитные явления и пользуемся представлением о магнитных зарядах, как будто они реально существуют. На самом деле это просто один из способов описания магнитного поля в пространстве (описания магнитного взаимодействия). Когда мы выясним свойства магнитного поля подробнее, мы перестанем пользоваться этим способом. Он нам нужен, как строителям леса для возведения здания. После окончания строительства леса разбирают и они больше не видны и не нужны.

Самое интересное, что магнитное поле (статическое) не оказывает никакого действия на покоящийся электрический заряд (или диполь), а электрическое поле (статическое) не оказывает никакого действия на покоящиеся магнитные заряды (или диполи). Ситуация такая, как будто поля существуют независимо друг от друга. Однако покой, как мы знаем, понятие относительное. При выборе другой системы отсчета «покоящееся» тело может стать «движущимся». Выяснилось, что электрическое и магнитное поле – это нечто единое, и каждое из полей представляет собой как бы разные стороны одной медали.

Это сейчас мы с легкостью говорим о родстве электрического и магнитного полей, а вплоть до начала 19 века электрические и магнитные явления не считались связанными. Об этой связи догадывались, искали экспериментальные подтверждения. Например, французский физик Араго собирал сведения о кораблях, сбивавшихся с курса после того, как в корабль ударяла молния. «Молния – испорченный компас» – связь есть, но как повторить эксперимент? Воспроизвести молнию тогда еще не умели, поэтому систематическое исследование провести было невозможно.

Точкой отсчета для начала понимания связи этих явлений послужило открытие, которое довелось сделать в 1820 году датчанину Гансу Христиану Эрстеду. Было установлено влияние электрического тока, протекающего по длинной прямой проволоке, на ориентацию расположенной рядом с проводом подвижной магнитной стрелки. Стрелка стремилась расположиться перпендикулярно проволоке. Обратное явление: влияние магнитного поля на электрический ток было открыто экспериментально Ампером.

Маленький плоский виток с током испытывает в магнитном поле как силовое, так и ориентирующее воздействие. Если магнитное поле однородно, то суммарная сила, действующая на виток с током равна нулю, при этом виток ориентируется (принимает равновесное расположение), при котором его плоскость перпендикулярна направлению вектора индукции магнитного поля. Для установления единицы величины индукции магнитного поля можно использовать и это механическое явление.

За несколько последующих за 1820 годом лет были выяснены основные особенности взаимодействия проводников с током между собой и с постоянными магнитами. Часть из них теперь называется законами. Эти законы связаны с именами физиков Ампера, Био, Савара, Лапласа. Самые общие выводы из установленных законов взаимодействия оказались такими:

  1. Заряженные частицы создают в пространстве вокруг себя электрическое поле.
  2. Электрическое поле одинаково действует на заряженные частицы, движущиеся или покоящиеся.
  3. Движущиеся заряженные частицы создают в пространстве вокруг себя магнитное поле.
  4. Магнитное поле оказывает силовое действие на заряженные частицы, находящиеся в движении, и не действует на покоящиеся заряженные частицы.
  5. Электрическое и магнитное поля, созданные заряженной частицей, при изменении ее положения и состояния движения не меняются во всем пространстве мгновенно, а имеет место задержка.
Выяснилось, таким образом, что взаимодействие заряженных частиц друг с другом зависит не только от их взаимного пространственного расположения, но и от их взаимного (относительного) движения. Законы, описывающие это взаимодействие, оказались достаточно простыми с точки зрения математики.

Мы с вами, изучая механику, пользовались законами Ньютона, из которых следует, что материальная точка, движущаяся с ускорением в какой-либо одной инерциальной системе отсчета, имеет такое же ускорение во всех других ИСО независимо от выбора. Теперь выяснилось, что магнитное поле действует только на движущиеся заряженные частицы. Представим себе, что в некоторой ИСО заряженная частица движется в магнитном поле, а электрического поля нет. Пересядем в другую инерциальную систему отсчета, в которой в данный момент времени рассматриваемая частица имеет нулевую скорость. Силовое воздействие со стороны магнитного поля пропало, а частица должна таки двигаться с ускорением!!! Что-то неладно в Датском королевстве! Чтобы покоящаяся в данный момент заряженная частица имела ускорение, она должна находиться в электрическом поле!

Вот так – оказывается, что электрическое и магнитное поля не являются абсолютными, а зависят от выбора системы отсчета. Абсолютным является наличие взаимодействия, а вот как оно будет описываться, «электрическим» или «магнитным» способом, зависит от выбора системы отсчета. Следовательно, мы должны понимать, что электрическое и магнитное поля не являются независимыми друг от друга. На самом деле правильно будет рассматривать единое электромагнитное поле. Отметим, что правильное описание полей дано в теории Джеймса Клерка Максвелла. Уравнения в этой теории написаны так, что их вид не меняется при переходе из одной инерциальной системы отсчета в другую. Это первая «релятивистская» теория в физике.

Электрические токи и магнитное поле

Вернемся в начало 19 века. Во время демонстраций на лекциях в университете Г.Х. Эрстед сам или с помощью студентов обратил внимание на то, что случайно оказавшаяся рядом с проводом магнитная стрелка изменила своё положение, когда по проводу пропустили ток. Более тщательное изучение явления показало, что в зависимости от величины и направления тока в длинной прямой проволоке магнитные стрелки ориентировались так, как показано на рисунке:

Линии индукции замкнуты, и в случае длинного прямого проводника с током эти замкнутые линии имеют форму окружностей, расположенных в плоскостях перпендикулярных проводнику с током. Центры этих окружностей находятся на оси проводника с током. Направление вектора магнитной индукции в заданной точке пространства (касательного к линии магнитной индукции) определяется правилом «правого винта» (буравчика, шурупа, штопора). Направление, в котором смещается штопор, изображенный на рисунке, при вращении вокруг его оси, соответствует направлению тока в длинной прямой поволоке, а направления, в которых движутся крайние точки его ручки, соответствуют направлению вектора магнитной индукции в тех местах, где эти концы ручки находятся.

Для схематического рисунка с концентрическими окружностями заряженные частицы в проволоке, расположенной перпендикулярно к плоскости рисунка, движутся вдоль этой проволоки и если бы двигались положительно заряженные частицы, то они уходили бы «от нас за эту плоскость». Если в проволоке движутся отрицательно заряженные электроны, то они тоже движутся вдоль проволоки, но «к нам из под плоскости рисунка».

Мешающим фактором являлось магнитное поле Земли. Чем большим был ток в проволоке, тем точнее ориентировались стрелки в направлении касательной к окружности с центром в месте нахождения проволоки. Вывод достаточно очевиден – вокруг проводника с током появилось магнитное поле. Магнитные стрелки выстраиваются вдоль вектора индукции магнитного поля.

По третьему закону Ньютона магнитная стрелка (магнит или его магнитное поле) в свою очередь тоже действует на проводник с током. Оказалось, что на прямой участок проводника длиной L, по которому течет ток I, со стороны однородного магнитного поля с индукцией В действует сила, пропорциональная L, I и В, причем направление силы зависит от взаимной ориентации векторов L и В . Вектор L совпадает по направлению с направлением скорости положительных заряженных частиц, которые создают электрический ток в этом отрезке провода. Эта сила получила название по имени одного из активных исследователей магнитных явлений – А.М. Ампера.

F =K I [L ×B ].

Здесь К – это коэффициент пропорциональности. Квадратными скобками обозначено векторное произведение двух векторов. Если проводник не прямой и магнитное поле не является однородным, то в этом случае для нахождения силы, действующей на проводник с током, нужно разбить его (мысленно) на множество небольших отрезков. Для каждого маленького отрезка можно считать, что он находится в однородном поле. Общая сила найдется суммированием сил Ампера по всем этим отрезкам.

Взаимодействие проводников с током

Ток в проволоке создает в окружающем пространстве магнитное поле, а это магнитное поле в свою очередь оказывает силовое действие на другую проволоку с током. (2) В системе единиц СИ единица силы тока 1 Ампер определяется из силового взаимодействия параллельных проводников с током. Два тонких длинных параллельных проводника, находящихся друг от друга на расстоянии 1 метр, по которым протекают одинаковые неизменяющиеся токи одного направления с силой в 1 Ампер, притягиваются друг к другу с силой 2×10 -7 Ньютона на каждый метр длины проводника.

В системе СИ в формуле для силы Ампера коэффициент пропорциональности К выбирается равным единице:

F = I [L ×B ].

Сила Лоренца

Если в формулу для силы Ампера подставить выражение для величины тока, составленное из слагаемых, создаваемых каждой движущейся заряженной частицей, то можно сделать вывод, что в магнитном поле на каждую движущуюся заряженную частицу действует сила:

F = q [v ×В ].

При наличии в пространстве и электрического, и магнитного поля заряженная частица испытывает действие силы:

F = q [v ×В ] + qЕ .

Силу, действующую на заряженную частицу, в электромагнитном поле называют силой Лоренца. Это выражение для силы справедливо всегда, а не только для стационарных полей.

Если вычислить работу силы Лоренца, которую она совершает при элементарном перемещении частицы, то выражение для силы нужно скалярно умножить на произведение v Δt. Первое слагаемое в формуле для силы Лоренца – это вектор перпендикулярный скорости частицы, поэтому умножение его на v Δt дает нуль.

Таким образом, магнитная составляющая силы Лоренца при перемещении заряженной частицы не совершает работу, поскольку соответствующие элементарные перемещения и магнитная составляющая силы всегда перпендикулярны друг другу.

Какое магнитное поле порождается током?

Эксперименты Био и Савара и теоретическая работа Лапласа (все – французские физики) привели к получению формулы для нахождения вклада каждого небольшого участка проводника с током в «общее дело» - в создание вектора индукции магнитного поля в данной точке пространства..

При выводе (точнее сказать: подборе) общей формулы было сделано предположение, о том, что суммарное поле складывается из отдельных частей, причем выполняется принцип суперпозиции, то есть поля, созданные разными участками проводников с током, складываются как векторы. Каждый участок проводника с током, а фактически каждая движущаяся заряженная частица, создает в окружающем пространстве магнитное поле. Результирующее поле в данной точке возникает как результат сложения векторов магнитной индукции, созданных каждым участком проводника с током.

Элементарная составляющая вектора магнитной индукции ΔВ , созданная малым участком проводника Δl с током I в точке пространства, отличающейся положением от этого участка проводника на вектор R , находится в соответствии с формулой:

ΔВ = (μ 0 /4π) I [Δl ×R ]/R 3 .

Здесь [Δl ×R ] – это векторное произведение двух векторов. Размерный коэффициент (μ 0 /4π) вводится именно в таком виде в системе СИ из соображений удобства, которые, повторимся, в школьной физике никак не проявляются.

Поле, созданное проводником произвольной формы, как обычно, находится суммированием элементарных векторов магнитной индукции, созданных небольшими участками этого проводника. Все экспериментальные результаты с постоянными токами подтверждают предсказания, полученные с помощью написанной выше формулы, которая носит имя: Био – Савара –Лапласа.

Вспомним определение тока, которое мы вводили в прошлом семестре. Ток – это поток вектора плотности тока через выбранную поверхность. В формулу для нахождения плотности тока входила сумма по всем движущимся заряженным частицам:

J = Σq i v i /V, I=(J S )

В формулу Био – Савара –Лапласа, следовательно, входит произведение (Δl S ), а это объем проводника, в котором движутся заряженные частицы.

Можно сделать вывод, что магнитное поле, созданное участком с током, возникает в результате совместного действия всех заряженных частиц этого участка. Вклад каждой частицы, имеющей заряд q и движущейся со скоростью v равен:

В = (μ 0 /4π) q [v ×R ]/R 3 = μ 0 ε 0 [v ×Е ],

Где Е = q R /(4πε 0 R 3).

Здесь R – это радиус вектор, начало которого расположено в точке, где находится частица, а конец вектора находится в той точке пространства, где ищется магнитное поле. Вторая часть формулы показывает, как связаны друг с другом электрическое и магнитное поля, созданные заряженной частицей в одной и той же точке пространства.

Е - электрическое поле, созданное той же частицей в той же точке пространства. μ 0 =

4π×10 -7 Гн/м - магнитная постоянная.

«Нецентральность» сил электромагнитного взаимодействия

Если рассмотреть взаимодействие двух точечных движущихся заряженных одинаковых частиц, то обращает на себя внимание тот факт, что силы, описывающие это взаимодействие, не направлены вдоль прямой, соединяющей частицы. Действительно, электрическая часть сил взаимодействия направлена вдоль этой прямой, а магнитная часть – нет.

Пусть все другие частицы находятся очень далеко от этой пары частиц. Выберем для описания взаимодействия систему отсчета, связанную с центром масс этих частиц.

Сумма внутренних электрических сил, очевидно, равна нулю, так как они направлены в противоположные стороны, расположены вдоль одной прямой и равны друг другу по величине.

Сумма магнитных сил тоже равна нулю:

Qμ 0 ε 0 [v 2 [v 1 ×Е 1 ]] + qμ 0 ε 0 [v 1 [v 2 ×Е 2 ]] = 0

v 2 = – v 1 ; Е 1 = – Е 2 .

А вот сумма моментов внутренних сил может не быть равной нулю:

Qμ 0 ε 0 [R 12 [v 2 [v 1 ×Е 1 ]]] = qμ 0 ε 0 [v 1 ×Е 1 ](R 12 v 2 ).

Может показаться, что найден пример, опровергающий третий закон Ньютона. Однако следует отметить, что сам третий закон сформулирован в модельном виде при условии, что есть только два участника взаимодействия, причем в нем никак не рассматривается природа передачи взаимодействия на расстоянии. В данном случае участников события три: две частицы и электромагнитное поле в пространстве вокруг них. Если система изолирована, то для неё в целом выполняется закон сохранения импульса и момента импульса, поскольку не только частицы, но и само электромагнитное поле обладает этими характеристиками движения. Из этого следует, что рассматривать взаимодействие движущихся заряженных частиц нужно обязательно с учетом изменения в пространстве электромагнитного поля. Мы будем обсуждать (в одном из следующих разделов) возникновение и распространение в пространстве электромагнитных волн при ускоренном движении заряженных частиц.

Если выбрать какую-нибудь другую систему отсчета, в которой модули скоростей этих частиц v 1 и v 2 , то отношение модулей магнитной составляющей силы взаимодействия между частицами и электрической составляющей меньше либо равно, чем величина:

Это означает, что при скоростях движения частиц много меньших скорости света основную роль играет электрическая составляющая взаимодействия.

В тех ситуациях, когда в проволоках электрические заряды компенсируют друг друга, электрическая часть взаимодействия систем, состоящих из большого числа заряженных частиц, становится значительно меньше магнитной части. Это обстоятельство и позволяет изучать магнитное взаимодействие «отдельно» от электрического.

Измерительные приборы и динамики

После открытий Эрстеда и Ампера в распоряжение физиков поступили приборы для регистрации тока: гальванометры. В этих приборах используется взаимодействие тока и магнитного поля. В некоторых из современных приборов используются постоянные магниты, а в некоторых магнитное поле создается током. Они сейчас называются по-разному – амперметр, вольтметр, омметр, ваттметр и т.д. но в основе все приборы этого типа едины. В них магнитное поле действует на катушку с током.

В измерительных приборах катушка с током расположена так, что на нее со стороны магнитного поля действует механический момент сил. Спиральная пружина, прикрепленная к катушке, создает механический момент сил, действующий на катушку. Положение равновесия достигается при повороте рамки с током на угол, соответствующий протекающему току. На катушке закреплена стрелка, угол поворота стрелки и служит мерой тока.

В приборах магнитоэлектрической системы магнитное поле постоянно. Его создает постоянный магнит. В приборах электромагнитной системы магнитное поле создается током, протекающим по неподвижной катушке. Механический момент сил пропорционален произведению тока подвижной катушки и индукции магнитного поля, которая в свою очередь пропорциональна току в неподвижной катушке. Если, например, токи в обеих катушках прибора электромагнитной системы пропорциональны друг другу, то момент сил пропорционален квадрату величины тока.

Кстати, на основе взаимодействия тока и магнитного поля созданы всеми Вами любимые динамические громкоговорители. В них катушка, по которой пропускается ток, расположена так, что со стороны магнитного поля на нее действует сила вдоль оси динамика. Величина силы пропорциональна току в катушке. Смена направления тока в катушке приводит к перемене направления действия силы.

Гипотеза Ампера

Для объяснения внутреннего устройства постоянных магнитов (сделанных из ферромагнитных материалов) Ампер выдвинул предположение – гипотезу – о том, что материал магнита состоит из большого количества маленьких контуров с током. Каждая молекула вещества образует маленькую рамку с током. Внутри материала магнита во всем объеме молекулярные токи компенсируют друг друга, а на поверхности предмета как будто течет «поверхностный» ток. Если внутри магнитного тела имеется полость, то по поверхности этой полости тоже течет некомпенсированный «поверхностный» ток.

Этот поверхностный ток создает в пространстве, окружающем магнит, точно такое же магнитное поле, как и токи всех молекул магнита при их совместном действии.

Гипотеза Ампера ждала своего экспериментального подтверждения несколько десятилетий и, в конце конов, полностью оправдала себя. По современным представлениям некоторые атомы и молекулы имеют свои собственные магнитные моменты, связанные с движением внутри них заряженных частиц, из которых составлены эти атомы и молекулы. Как оказалось, и сами заряженные частицы, из которых построены атомы и молекулы, имеют магнитные дипольные моменты, связанные с механическим внутренним движением этих частиц. (3)

Гипотеза Ампера позволяет отказаться от модели магнитных зарядов, поскольку вполне адекватно объясняет происхождение магнитного взаимодействия.

Задачи:

  1. Два длинных полосовых магнита лежат рядом друг с другом «полюс к полюсу». Северный рядом с северным, а южный рядом с южным. На линии, являющейся продолжением магнитов в точке А, находящейся на расстоянии L от ближних к ней полюсов создано магнитное поле с индукцией В. Вы получили задание увеличить индукцию поля в точке А в 1,414 раза, и изменить направление поля в этой точке на 45°. Разрешается переместить один из магнитов. Как Вы выполните задание?
  2. Во время экспедиции к северному магнитному полюсу Земли участники экспедиции расставили на плоской горизонтальной поверхности льда вокруг полюса N = 1000 очень легких штативов каждый высотой L = 1 м и с основанием диаметром D = 10 см и протянули по их верхним точкам металлическую проволоку площадью поперечного сечения S = 1 мм 2 . Получился плоский многоугольник с формой близкой к кольцу радиуса R = 100 м. Какой минимальный по величине постоянный ток нужно пропустить по проволоке, чтобы все штативы упали внутрь образованного их основаниями многоугольника? Величина индукции магнитного поля В вблизи полюса на поверхности Земли равна 10 -4 Тл. Плотность ρ материала проволоки 10 4 кг/м 3 .
  3. По двум тонким параллельным проводам текут одинаковые токи противоположных направлений. Провода находятся на расстоянии L друг от друга. В точке А, находящейся на расстоянии L и от одного и от другого провода токами создано магнитное поле с индукцией В. В дном из проводов направление тока изменилось на противоположное, а величина тока осталась прежней. Как изменилась (по величине и по направлению) индукция магнитного поля в этой точке А?
  4. На гладком горизонтальном столе лежит круглый проволочный виток из жесткой проволоки. Радиус витка R. Масса витка М. В пространстве имеется однородное горизонтальное магнитное поле с индукцией В. Какой минимальный по величине постоянный ток нужно пропустить по витку, чтобы он перестал лежать неподвижно горизонтально? Опишите его движение после пропускания такого тока.
  5. В однородном магнитном поле с индукцией В движется частица, имеющая массу М и заряд Q. Скорость частицы составляет угол & (альфа) с вектором индукции магнитного поля. Опишите характер движения частицы. Какова форма ее траектории?
  6. Заряженная частица попала в область пространства, где есть однородные и взаимно перпендикулярные электрическое поле Е и магнитное поле В. Частица движется с постоянной скоростью. Какова её минимально возможная величина?
  7. Два протона, движущиеся в однородном магнитном поле В = 0,1 Тл, постоянно находятся на одинаковом расстоянии L = 1 м друг от друга. При каких минимальных скоростях движения протонов это возможно?
  8. В области пространства между плоскостями Х = А и Х = С имеется однородное магнитное поле В, направленное вдоль оси Y. Частица с массой М и зарядом Q влетает в эту область пространства, имея скорость V, направленную вдоль оси Z. Какой угол будет составлять скорость частицы с плоскостью Х =const после того, как она выберется из области с магнитным полем? Оси X,Y,Z взаимно перпендикулярны.
  9. Из «слабомагнитного» (не ферромагнитного) материала изготовлен длинный (L) однородный стержень. Его подвесили за середину на тонкой длинной нити в лаборатории, расположенной вблизи экватора. В поле тяжести и в магнитном поле Земли стержень расположился горизонтально. Стержень вывели из положения равновесия, повернув его на угол 30 ° вокруг вертикальной оси, совпадающей с нитью. Стержень оставили неподвижным и отпустили. Через 10 секунд стержень прошел положение равновесия. Через какое минимальное время он снова пройдет положение равновесия? Затем стержень разрезали на два равных по длине L/2 стержня. С одним из них проделали такой же эксперимент. С каким периодом укороченный стержень совершает малые колебания вблизи положения равновесия?
  10. На оси маленького цилиндрического магнита находится маленький «слабомагнитный» шарик. Расстояние L от шарика до магнита гораздо больше размеров магнита и шарика. Тела притягиваются друг к другу с силой F. С какой силой они будут притягиваться, если расстояние между ними уменьшится в 2 раза? Шарик остается на оси магнита.

1 Исторические названия не отражают адекватно смысла введенных величин, характеризующих электрическую и магнитную составляющие «электромагнитного поля», поэтому мы не будем разбираться с этимологией этих слов.

2 Вспомните: примерно такую же формулировку мы использовали при обсуждении взаимодействия электрических зарядов.

3 В данном случае имеется ввиду такое свойство элементарных частиц, как собственный механический момент количества движения – спин.

Бури и т. д. Как они возникают? Чем характеризуются?

Магнетизм

Магнитные явления и свойства в совокупности называют магнетизмом. Об их существовании было известно очень давно. Предполагается, что уже четыре тысячи лет назад китайцы использовали эти знания для создания компаса и навигации в морских походах. Проводить опыты и серьезно изучать физическое магнитное явление начали только в XIX веке. Одним из первых исследователей в этой области считается Ханс Эрстед.

Магнитные явления могут происходить как в Космосе, так и на Земле, и проявляются только в пределах магнитных полей. Такие поля возникают от электрических зарядов. Когда заряды неподвижны, вокруг них образуется электрическое поле. Когда они движутся - магнитное поле.

То есть явление магнитного поля возникает с появлением электрического тока или переменного электрического поля. Это область пространства, внутри которой действует сила, влияющая на магниты и магнитные проводники. Она имеет свое направление и уменьшается по мере отдаления от своего источника - проводника.

Магниты

Тело, вокруг которого образуется называется магнитом. Самым маленьким из них является электрон. Притяжение магнитов - самое известное физическое магнитное явление: если приложить два магнита друг к другу, то они либо притянуться, либо оттолкнуться. Все дело в их положении относительно друг друга. Каждый магнит имеет два полюса: северный и южный.

Одноименные полюса отталкиваются, а разноименные, наоборот, притягиваются. Если разрезать его надвое, то северный и южный полюса не разделятся. В результате, мы получим два магнита, на каждом из которых также будет по два полюса.

Существует ряд материалов, которые обладают К ним относятся железо, кобальт, никель, сталь и т.д. Среди них есть и жидкости, сплавы, химические соединения. Если магнетики подержать возле магнита, то они и сами им станут.

Такие вещества, как чистое железо, легко приобретают подобное свойство, но и быстро с ним прощаются. Другие (например, сталь) намагничиваются дольше, но удерживают эффект длительное время.

Намагничивание

Выше мы установили, что магнитное поле возникает при движении заряженных частиц. Но о каком движении может идти речь, например, в куске железа, висящем на холодильнике? Все вещества состоят из атомов, в которых и находятся движущиеся частицы.

Каждый атом обладает своим магнитным полем. Но, в одних материалах эти поля направлены хаотично в различные стороны. Из-за этого, вокруг них не создается одного большого поля. Такие вещества не способны намагничиваться.

В других материалах (железе, кобальте, никеле, стали) атомы способны выстраиваться так, что все они будут направлены одинаково. В результате, вокруг них формируется общее магнитное поле и тело намагнитится.

Получается, намагничивание тела - это упорядочивание полей его атомов. Чтобы нарушить этот порядок достаточно сильно ударить по нему, например, молотком. Поля атомов начнут хаотичное движение и утратят магнитные свойства. Тоже произойдет, если материал нагреть.

Магнитная индукция

Магнитные явления связаны с движущимися зарядами. Так, вокруг проводника с электрическим током непременно возникает магнитное поле. Но может ли быть наоборот? Этим вопросом однажды задался английский физик Майкл Фарадей и открыл явление магнитной индукции.

Он заключил, что постоянное поле не может вызвать электрический ток, а переменное - может. Ток возникает в замкнутом контуре магнитного поля и называется индукционным. Электродвижущая сила при этом будет изменяться пропорционально изменению скорости поля, которое пронизывает контур.

Открытие Фарадея было настоящим прорывом и принесло немалую пользу производителям электротехники. Благодаря ему, стало возможным получать ток из механической энергии. Закон, выведенный ученым, применялся и применяется в устройстве электродвигателей, различных генераторов, трансформаторов и т.д.

Магнитное поле Земли

У Юпитера, Нептуна, Сатурна и Урана есть магнитное поле. Наша планета - не исключение. В обычной жизни мы практически не замечаем его. Оно не осязаемо, не имеет вкуса или запаха. Зато именно с ним связаны магнитные явления в природе. Такие, как полярное сияние, магнитные бури или магниторецепция у животных.

По сути, Земля является огромным, но не очень сильным магнитом, который имеет два полюса, не совпадающие с географическими. Магнитные линии выходят из Южного полюса планеты и входят в Северный. Это означает, что на самом деле Южный полюс Земли является северным полюсом магнита (поэтому на Западе синим цветом обозначается южный полюс - S, а красным обозначают северный полюс - N).

Магнитное поле распространяется на сотни километров от поверхности планеты. Оно служит невидимым куполом, который отражает мощное галактическое и солнечное излучение. Во время столкновения частиц радиации с оболочкой Земли и образуются многие магнитные явления. Давайте рассмотрим самые известные из них.

Магнитные бури

На нашу планету сильное влияние оказывает Солнце. Оно не только дает нам тепло и свет, но и провоцирует такие неприятные магнитные явления, как бури. Их появление связано с повышением солнечной активностью и процессами, которые происходят внутри этой звезды.

Земля постоянно испытывает влияние потока ионизированных частиц с Солнца. Они движутся со скоростью 300-1200 км/с и характеризуются как солнечный ветер. Но время от времени на звезде происходят внезапные выбросы огромного количества этих частиц. Они действуют на земную оболочку как толчки и заставляют магнитное поле колебаться.

Длятся такие бури обычно до трех суток. В это время некоторые жители нашей планеты испытывают недомогание. Колебания оболочки отражаются на нас головными болями, повышением давления и слабостью. За всю жизнь человек переживает в среднем 2000 бурь.

Северное сияние

Есть и более приятные магнитные явления в природе - северное сияние или же аврора. Оно проявляется в виде свечения неба с быстро меняющимися цветами, и происходит преимущественно в высоких широтах (67—70°). При сильной активности Солнца сияние наблюдается и ниже.

Примерно в 64 километрах над полюсами заряженные солнечные частицы встречаются с дальними границами магнитного поля. Здесь некоторые из них направляются к магнитным полюсам Земли, где взаимодействуют с газами атмосферы, отчего и появляется сияние.

Спектр свечения зависит от состава воздуха и его разреженности. Красное свечение происходит на высоте от 150 до 400 километров. Синие и зеленые оттенки связаны с большим содержанием кислорода и азота. Они происходят на высоте 100 километров.

Магниторецепция

Основная наука, изучающая магнитные явления, - физика. Однако некоторые из них может затрагивать и биология. Например, магниточувствительность живых организмов - способность распознавать магнитное поле Земли.

Этим уникальным даром обладают многие животные, в особенности мигрирующие виды. Способности к магниторецепции обнаружена у летучих мышей, голубей, черепах, кошек, оленей, у некоторых бактерий и т. д. Она помогает животным ориентироваться в пространстве и находить свое жилье, удаляясь от него на десятки километров.

Если человек для ориентации использует компас, то животные пользуются вполне природными инструментами. Точно определить, как и почему работает магниторецепция, ученые пока не могут. Но известно, что голуби способны находить свой дом даже, если их увезти от него на сотни километров, закрыв при этом птицу в абсолютно темном ящике. Черепахи находят место своего рождения даже спустя годы.

Благодаря своим «суперспособностям» животные предчувствуют извержение вулканов, землетрясения, бури и другие катаклизмы. Они тонко чувствуют колебания в магнитном поле, что повышает способность к самосохранению.

Слайд 2

Этапы работы

Поставить цели и задачи Практическая часть. Исследования и наблюдения. Вывод.

Слайд 3

Цель:исследовать экспериментальным путем свойства магнитных явлений. Задачи: - Изучить литературу. - Провести опыты и наблюдения.

Слайд 4

Магнетизм

Магнетизм - форма взаимодействия движущихся электрических зарядов, осуществляемая на расстоянии посредством магнитного поля. Магнитное взаимодействие играет важную роль в процессах, протекающих во Вселенной. Вот двапримера, подтверждающие сказанное. Известно, чтомагнитное поле звезды порождает звездный ветер,аналогичный солнечному, который, уменьшая массу и момент инерции звезды, изменяет ход ее развития. Известно также, что магнитосфера Земли защищает нас от гибельного воздействия космических лучей. Если бы ее не было, эволюция живых существ на нашей планете, видимо, пошла бы иным путем, а может быть, жизнь на Земле не возникла бы вовсе.

Слайд 5

Слайд 6

Магнитное поле Земли

Основная причина наличия магнитного поля Земли в том, что ядро Земли состоит из раскаленного железа (хорошего проводника электрических токов, возникающих внутри Земли). Графически магнитное поле Земли похоже на магнитное поле постоянного магнита. Магнитное поле Земли образует магнитосферу, простирающуюся на 70-80 тыс. км в направление Солнца. Она экранирует поверхность Земли, защищает от вредного влияния заряженных частиц, высоких энергий и космических лучей, определяет характер погоды. Магнитное поле Солнца в 100 больше, чем земное.

Слайд 7

Изменение магнитного поля

Причиной постоянных изменений является наличие залежей полезных ископаемых. На Земле имеются такие территории, где ее собственное магнитное поле сильно искажается залеганием железных руд. Например, Курская магнитная аномалия, расположенная в Курской области. Причина кратковременных изменений магнитного поля Земли действие "солнечного ветра", т.е. действие потока заряженных частиц, выбрасываемых Солнцем. Магнитное поле этого потока взаимодействует магнитным полем Земли, возникают "магнитные бури".

Слайд 8

Человек и магнитные бури

Сердечно – сосудистая и кровеносная система повышается артериальное давление, ухудшается коронарное кровообращение. Магнитные бури вызывают в организме человека, страдающего заболеваниями Сердечно сосудистой системы, обострения (инфаркт миокарда, инсульт, гипертонический криз и т. д.). Органы дыхания Под действием магнитных бурь изменяются биоритмы. Состояние одних больных ухудшается до магнитных бурь, а других - после. Приспосабливаемость таких больных к условиям магнитных бурь очень мала.

Слайд 9

Практическая часть

Цель: собрать данные о количестве вызовов скорой помощи за 2008 год и сделать вывод. Выяснить корреляционную зависимость детской заболеваемости и магнитными бурями.

© 2024 sauna-rubikon.ru - Рубикон - строительный портал